Design Intent and Basis of Design of Energy- and Comfort-Related Systems

roject:			
pproved:	Name	Owner's Representative	Date
	Name	Commissioning Authority	Date

Overview

Following are the primary areas related to energy use and comfort for which the design intent and basis of design should be defined. The design intent provides the explanation of the ideas, concepts and criteria that are considered to be very important to the owner, coming out of the programming and conceptual design phases. The basis of design is the documentation of the primary thought processes and assumptions behind design decisions that were made to meet the design intent. The format below merges the salient parts of the design intent and basis of design. The design intent evolves from more general descriptors during the conceptual design, to more specific descriptors during actual design, to in-depth and specific descriptors during the specifying stage, which are finalized during the as-built phase. As part of the design narrative, one-line CAD drawings shall be developed for the systems listed in the *Design-Phase Commissioning Plan*.

Under each area or building system is an outline of pertinent questions and data needed. Sequences of operation for all outlined dynamic systems and components should be clearly documented. Attaching equipment manufacturers' sequences may acceptable, but will generally require additional narrative.

To the right of the heading for each section, the party responsible for providing the design intent is indicated, as is the phase of the design construction process during which design documentation should be established. Refer to the Instructions section, just previous in this Appendix for full instructions.

The following abbreviations are used:

Model Commissioning Plan and Guide Specifications

ltem	Abbreviation	Refers To
Responsible Party	Arch	Architect
	Mech Engr	Mechanical Engineer
	Elec Engr	Electrical Engineer
	Ltg Des	Lighting Designer
	Ctrls Cont	Controls Contractor
Design Phase	Program	Programming Phase
	Concept Des	Conceptual or Schematic Design Phase
	Design Dev	Design Development Phase
	Const Doc	Construction Documents Phase
	Spec Dev	Specification Development (late Const. Documents Phase)

Contents

The following systems and issues are included in this document in this order:

- 1. General building design and function
 - Overview
 - Sustainable construction and environmental compatibility
 - Indoor environmental quality—thermal, air distribution, acoustics, air quality, visual quality
 - Landscaping
- 2. HVAC systems—General
 - Overview
 - Design conditions and load assumptions
- 3. Chiller system (chillers, cooling towers, pumps, piping)
- 4. Boiler and heating water system
- 5. Roof top packaged System, including all components
- 6. VAV terminal units (cooling only)
- 7. VAV terminal units (reheat)
- 8. Heat recovery unit
- 9. Computer room AC unit
- 10. Daylighting controls
- 11. Lighting sweep control
- 12. Building automation system

Model Commissioning Plan and Guide Specifications

- 13. Split air conditioner or heat pump
- 14. Emergency power system

Model Commissioning Plan and Guide Specifications

Part II.	Commissio	oning Plan–	-Design	Phase
	Appendix 1.	Design Doc	umentatio	n Form

1.1 General Building Design and Function Architect What are the general design objectives regarding energy efficiency? Comfort and indoor environmental quality? Sustainability and environmental compatibility? Other: Sequences	When To Do I Design De	, , ,	
1.1 General Building Design and Function Architect What are the general design objectives regarding energy efficiency? Comfort and indoor environmental quality? Sustainability and environmental compatibility? Other: Sequences	Design De	Design, Function, and Landscaping	
What are the general design objectives regarding energy efficiency?	Design De		General Building Desi
Sustainability and environmental compatibility? Other: Sequences Architect		sign and Function Architect	General Building Design
Comfort and indoor environmental quality? Comfort and indoor environmental quality? Sustainability and environmental compatibility? Cother: Co		ectives regarding energy efficiency?	t are the general design objectiv
Other: Sequences Architect		ntal quality?	fort and indoor environmental q
Other: Sequences Architect			·
Sequences Architect		al compatibility?	ainability and environmental co
			r:
What are the main control sequences for the watering systems that ensure water	Spec De	Architect	uences
	r conservation?	ences for the watering systems that ensure water	t are the main control sequences
Maintenance Architect	Spec De	Architect	ntenance
Are there any special instructions as to the care of the landscape elements that w degrade their energy and comfort benefits? (refer to O&M manual sections, if a			

Design Intent	Architect	Concept Des
What are the objectives regarding sustainability	and environmental compati	bility?
Basis of Design-General Description and Fu	nction	
	Architect	Design Dev
How will the building/grounds systems meet the	e design intent?	
1.3 Indoor Environmental Quality		
-	Mech Engr	Concept Des
Design Intent	Mech Engr conmental quality?	Concept Des
-	-	Concept Des
Design Intent	-	Concept Des
Design Intent What are the general objectives for indoor envir	ronmental quality?	Concept Des
Design Intent	Function	Concept Des
Design Intent What are the general objectives for indoor envir Thermal Comfort—General Description and	Function Mech Engr	Design Dev
Design Intent What are the general objectives for indoor envir Thermal Comfort—General Description and Record the occupant activity and design temper	Fonmental quality? Function Mech Engr atures for the various spaces	Design Dev s in Table 1.
Design Intent What are the general objectives for indoor envir Thermal Comfort—General Description and Record the occupant activity and design temper Air Distribution	Fonmental quality? Function Mech Engr atures for the various spaces Mech Engr	Design Dev
Design Intent What are the general objectives for indoor envir Thermal Comfort—General Description and Record the occupant activity and design temper	Fonmental quality? Function Mech Engr atures for the various spaces Mech Engr	Design Dev s in Table 1.
Design Intent What are the general objectives for indoor envir	Function Mech Engr atures for the various spaces Mech Engr ers?	Design Dev s in Table 1.
Design Intent What are the general objectives for indoor envir Thermal Comfort—General Description and Record the occupant activity and design temper Air Distribution	Function Mech Engr atures for the various spaces Mech Engr ers?	Design Dev s in Table 1.
Design Intent What are the general objectives for indoor envir	Function Mech Engr atures for the various spaces Mech Engr ers?	Design Dev s in Table 1.

1.2 Sustainable Construction and Environmental Compatibility

.

What special considerations are being given to spaces with high solar load regarding cooling, large glazed areas, cold-air convective drafts, etc.? What solutions were used?

Acoustics

What is the design NC (noise criteria) sound level? Provide this information in Table 1. Are there any special acoustical considerations for any areas (areas close to the AHU, private areas, open office areas, etc.)? How will this criteria be met? (flexible duct, duct lining, fan type, lead wraps, diffuser type, TU damper type, etc.)

Noise class (NC) 35-40 for closed offices and 41-43 for open offices, recommended by ASHRAE)

Air Quality

Mech Engr

Mech Engr

Const Doc

Const Doc

For the general building and individual spaces, what is the desired outside air fraction or cfm per person and the number of persons per square foot? (Provide this information in Table 1). Is the outside air (OSA) controlled by CO_2 monitors? Explain.

Can occupants adjust ventilation? How and what limits apply to what areas?

Are there any special indoor pollutant source concentrations? How are they handled? List areas served by exhaust fans, the fan size, air changes per hour and operational control.

How will the fresh air rate be maintained at low supply air volumes of the VAV system? Are perimeter zones treated differently than interior zones (reheat box damper settings, etc.)?

Where are the outside air intakes located? Are they near any potential sources of pollutants?				
Are full-drain condensate pans used in the air What other special IAQ issues were considered				
Visual Quality	Arch, Ltg Des,	Design Dev		
What are the design footcandle levels for the Why? Is additional task lighting assumed?	various spaces? (Provide this in	formation in Table 1).		
Do any spaces have special glare requirement How will they be met? (special light fixtures etc.)		ial CRT screens,		
How will glare be controlled in daylit areas?				
What are the parameters and sequences of op- lights? How will occupants interact with the s				
1.4 Landscaping	Architect	Design Dev		
Design Intent				
Describe the objectives and the elements of the energy efficiency, water conservation, and co		t contribute to		

Number of sheets attached to this section: _____

1.5 Interior Conditions Basis of Design Mech Engr Const Doc

Table 1

Reception, records, conference room, closed offices, open offices, exercise room, lunch room, inventory, stock, etc.

Space	Use / Activity	Occupant Type	Num of Occs	Operating Hours per Day	Design Cooling DB	Design Cooling WB or RH	Design Heating DB OSAT	OSA CFM / Person or CO ₂	Design Noise Level (NC)	Design Light Level (FC)

Model Commissioning Plan and Guide Specifications

Model Commissioning Plan and Guide Specifications

_

2 HVAC Systems and Design Parameters				
2.1 General	Mech Engr	Design Dev		
General description of the main H	VAC systems and areas served.			
<u>System</u>	Areas Served			
Why were the above particular sys	stems chosen?			
Describe the level of priority given	n to energy conservations for the system.			

2.2 Specific System	em Descriptions	Mech Engr	Const Doc
System	Heating / Cooling / Both	Areas Served	

What is the rationale for the v	way the HVAC ar	nd lighting were z	oned?		
2.3 Load Calculations		Mech	Engr		Const Doc
What outdoor design condition	ons were assumed	for load calculati	ions?		
Summer: DB WB		Winter: D	В		
What indoor design condition	ns were assumed f	for load calculation	ons?		
Summer: DB RH		Winter: D	В		
Internal load assumptions: L	ighting:W	//sf. Misc:		Other:	
	,	latant			
People/100 sf: Btu/h	r/person: sensible	, latent _			
-					

01	•
(il	azıng:
UI.	uling

Orientation	% of Wall Area	Overall U	SC
Ν			
S			
E			
W			

What overall safety factor was used and how much diversity was assumed for the heating, cooling plant and fan size?

For redundant equipment, what redundancy criteria were used?

Number of sheets attached to this section: _____

_

3 Chiller System (Chillers, Cooling Towers, Pumps, Piping)

3.1 Design Intent	Mech Engr	Design Dev
What is this chiller system used for? □ Supplies building space.	□ Process chilled	
Other:		
What areas of the building do the chillers serve?		
List the areas that the chillers do not serve?		
What types of air conditioning equipment serve t	he areas not served by the	chillers?
What vibration and noise considerations are give	n to the location of the chi	llers?

What energy efficiency objectives are there for the chiller system? \Box Highly efficient, \Box Moderately efficient, \Box Standard efficiency

What level of automatic control features are desired for this chiller system relative to automatic staging, optimization, central building automation system monitoring and control capabilities, etc.? \Box Highly automated, \Box Moderately automated, \Box Minimally automated

What type of refrigerant will be used and why?

3.2 Basis of Design-Components Description and Methods for Meeting Design Intent

Chillers	Mech Engr	Const Doc
Briefly describe the chiller system.		

Centrifugal Screw Hermetically sealed Heat recovery Refrigerant type: Air cooled Water cooled Capacity control type: Prerotation vanes Other:	 Reciprocating chiller Heat recovery Refrigerant type: Air cooled Water cooled Evaporative cooled Stages of unloading: Other:
How many chillers of each size are there? (size a	and number of each size):
Is there a standby / redundant chiller during desi Are there isolation valves for when only one chi What method was used for determining the desi	ller is running?
Attach load calculations and assumptions, if not factor, outdoor DB, WB, indoor DB, lighting W cfm/person, infiltration rate, glazing % of wall,	/sf, plug loads W/sf, people/100 sf, ventilation
Describe any provisions in the chiller system for expansion.	r accomodating future building or load
What evidence can be provided to show the chil	lers are not oversized?
Why were they chosen to be different or equal s	ize?
Was variable compressor speed seriously consid	lered? If not, why not?

Was heat recovery for the chiller analyzed?_____ Why or why not? _____

What were the results of the analysis?

What vibration and noise considerations are given to the model and features of the chosen chillers?

What is the rated efficiency of each chiller at full load and the APLV, in kW/ton?_____

What rationale was used to select these efficiencies with the sizes? Were more efficient models analyzed?______

Attach engineering or energy simulation and economic calculations for the selections.

Are the chillers intended to be staged back and forth, depending on load, to minimize energy use?

Will staging occur manually or automatically?

What special control strategies will be employed with the chiller system?

What controls will be in place to allow the lowest economical entering condenser water temperature to be realized? What other options were considered besides this strategy?_____

Fully describe the interface that the building automation system has with the chiller system:

What control will the building automation system (BAS) have over the chiller system?

 \square BAS enables/disables the chiller, \square assigns the lead chiller, \square assigns the lead primary chilled water pump, \square assigns the lead secondary chilled water pump, \square assigns the lead condenser pump, \square assigns the lead cooling tower

The BAS monitors the following: □ LCHWT, □ RCHWT, □ ECDWT, □ LCDWT, □ LCDWT, □ CDW flow, □ CHW primary flow, □ Secondary CHW flow, □ Cooling tower bypass valve, □ Chiller alarms that report to BAS (list): _____

Other _____

The BAS can change the following: □ LCHWT setpoint, □ Reset parameters, □ ECDWT setpoint, □ Cooling tower fan staging parameters, □ Chilled water pumping pressure setpoints, □ Pressure reset parameters, □ Demand limits, □ Other _____

Cooling Tower	Mech Engr	Const Doc
Describe the cooling tower (cross flow, counterfl	low, etc.)	
What are the sizes of the cooling towers?		
What is the approach temperature rating of the co	ooling tower?	
Why was a lower approach not chosen?		
Attach energy and economic analyses.		
Were oversized cooling towers analyzed to impro	ove chiller efficiency?	Why or why not?
Attach analysis.		
How many motors are there per tower fan?	Describe	
Are the motors premium efficiency?		
How is the fan speed controlled?		
How do the sizes of the chillers affect the sizes o	f the cooling towers select	ed? Are they paired?
Can two cooling towers serve one chiller? How are the cooling towers staged?		
Will condenser water flows be monitored?	If not, explain why	
Will the cooling tower be used in winter?	Why?	

Air or Evaporative Cooled Condenser	Mech Engr	Const Doc
□ Air cooled □ Evaporative cooled		
Why was an air-cooled condenser chosen over a coo	ling tower?	
Why was an air-cooled condenser chosen over an ev	aporative condenser?	
Were more efficient models analyzed? (attach analy	/sis)	
Describe the staging features		
Chilled and Condenser Water Pumps and Piping	Mech Engr	Const Doc
What pressure drop range was the piping system des	signed to:	
□ Very low pressure drop, □ Moderately low press an analysis performed for using a lower pressure dro use?	pp to reduce pump size a Attach ana	nd energy alysis. How were
pipe losses determined?rule of thumb,de	tailed take-off and calcu	lation,other.
Are pipe circuits designed to be close to being self-b restriction (head loss) of balancing valves and circuit		to minimize the
Describe the pumps chosen. Primary:		
Secondary:		
Condenser pumps		
Are they equipped with premium energy-efficient m	otors?	
Why or why not?		
How large of safety factor was used in the pump size was the over-sizing rationale for the pumps?	ntial system expansion,	□ Safety factor,

ASHRAE 90.1 doesn't allow flow throttling with a balancing valve more than 3 hp. Will this system comply?_____

Would a more detailed head loss calculation likely result in a smaller safety factor and pump?

Describe any standby or redundant pumps and their operation.

Will the control sequences allow for automatic changeover to the lag or standby pump upon pump failure and similarly for cooling tower fan failure or will manual valving be required? Upon failure, does the lag pump or tower start or does the chiller go down and lag chiller start. Explain fully for each:

Primary chilled water pumps: _____

Secondary chilled water pumps: _____

Condenser water pumps: _____

Cooling tower fans:

How is the secondary chilled water capacity controlled? \Box Variable speed drives (VFD) on pumps, \Box Bypass valve. If by bypass valve, explain the rationale for not using variable speed drives and attach the economic analysis.

For VFD's, how will the pump speed be controlled? □ Constant water pressure setpoint, □ Reset water pressure setpoint. If the pressure is not reset, why not?_____

For a VFD on pressure reset, how low of speed will the pump be allowed to go? Is this is as low as possible? Explain._____

Will chilled water flows be monitored? □ Primary flow, □ Secondary flow. If not, explain. _

Chiller System Sequence of Operations and Operating Parameters

Mech Engr Const Doc

Attach a full and comprehensive sequence of operations, including but not limited to the following conditions and systems, including all interactions:

Chiller, Cooling Tower and Pumps

- List parameter conditions that initiate start-up.
- Provide a detailed narrative of the full sequence and status and action of EACH component during EACH stage of start-up: low load, medium load, high load, staging to next chiller, up to full load on all chillers, and then back down again to OFF condition. List all setpoints, delays, parameters, conditions, etc., that are required to pass through each stage. The components for which status will be given at each stage are: chiller stage and load, primary, secondary and condenser pump status, speed and flow, cooling tower stage, cooling tower bypass valve, cooling tower fans and speed, pipe pressures and setpoint resets.

Describe the sequences for the following:

- Chiller optimization staging.
 - Temperature lockouts.
 - Status and sequence at power outage and fire alarm.
 - Effects of manual shutoff or failure of chiller, primary pump and secondary pump, condenser pump, cooling tower fan, vibration alarm.
 - List all alarms.
 - Include full sequences and setpoints for capacity and pressure control of the secondary chilled water system.
 - Include full sequences and setpoints for condenser water temperature control and cooling tower fan control parameters.
 - Cooling tower sump heater sequences, parameters and setpoints.
 - List the full sequence of operation for all energy conserving strategies, including their setpoints and parameters.
 - Weekend operation.
 - Normal occupied and unoccupied modes.

Equipment manufacturers' sequences and control drawings may be included, but will generally require additional narrative. Flow charts may be used if sufficiently detailed. Narrative and flow chart examples are found in Section 4 of the instructions.

For the chiller, cooling tower and pumps, the sequences are expected to be about five single-spaced, typewritten pages.

Number of sheets attached to this section: _____

4 Boilers and Heating Water System

4.1 Design Intent

Mech Engr

Design Dev

Hot Water. What is this heating water system used for? □ Supplies hot water to air handler units to _____heat building space, _____preheat incoming cold air. □ Supplies hot water to _____perimeter VAV reheat terminal units, _____core VAV reheat terminal units.

Steam. What is the steam used for? □ Supplied to air handler units to ____heat building space, ____preheat incoming cold air. □ Supplies hot water to ____perimeter, ____core VAV reheat terminal units. □ Is converted to hot water in a converter before being used by the building.

Other: _

What areas of the building do the boilers serve?

List the areas that the boilers do not serve?

What types of heating equipment serve the areas not served by the boilers?

What vibration and noise considerations are given to the location of the boilers?

What energy efficiency objectives are there for the boiler system? \Box Highly efficient, \Box Moderately efficient, \Box Standard efficiency

What level of automatic control features are desired for this boiler system relative to automatic staging, optimization, central building automation system monitoring and control capabilities, etc.? \Box Highly automated, \Box Moderately automated, \Box Minimally automated

What type of fuel will be used and why? \Box Natural gas, \Box Fuel oil, \Box Other _____

4.2 Basis of Design-Components Description and Methods for Meeting Design Intent

Boilers		Mech Engr	Const Doc
The boiler is a \Box Condensing,	□ Forced draft,	□ Atmospheric burner,	\square Packaged, \square Other:

Briefly describe the boiler system.

How many boilers of each size and type are there? (list number and size):

Model Commissioning Plan and Guide Specifications

Is there a standby / redundant boiler during design conditions?_____

What method was used for determining the design heating load?

Attach load calculations and assumptions, if not given in a previous section. (Diversity, safety factor, outdoor DB, WB, indoor DB, lighting W/sf, plug loads W/sf, people/100 sf, ventilation cfm/person, infiltration rate, glazing % of wall, overall U; SC).

Describe any provisions in the boiler system for accomodating future building or load expansion.

What evidence can be provided to show that the boilers are not oversized?

Why were they chosen to be different or equal size?

What vibration and noise considerations are given to the model and features of the chosen boilers?

How many total stages of capacity does each boiler have? (burner beds and stages of fire)____

What is the rated efficiency of each boiler?

What rationale was used to select these efficiencies with the sizes? Were more efficient models analyzed?______

Attach engineering or energy simulation and economic calculations for the selections.

Are the boilers intended to be staged back and forth, depending on load, to minimize energy use?

Will this be done manually or automatically?

What special control strategies will be employed with the boiler system?_____

Fully describe the interface that the building automation system has with the boiler system: What control will the building automation system (BAS) have over the boiler system? \square BAS enables/disables the boiler, \square assigns the lead boiler, \square assigns the lead primary boiler pump, \Box assigns the lead secondary boiler water pump. The BAS monitors the following: \Box boiler alarm status, \Box pump status, \Box internal water temperature, □ steam pressure, □ HW primary flow, □ secondary HW flow, □ three-way mixing valve, D boiler alarms that report to BAS (list): Other The BAS can change the following: \Box LHWT setpoint, \Box Reset parameters, \Box Boiler water pumping pressure setpoints,
Pressure reset parameters,
Demand limits,
Other _____ _____ Will the boilers have low water cutout controls? 4.3 Heating Water Pumps and Piping Mech Engr Const Doc What pressure drop range was the piping system designed to: \Box Very low pressure drop, \Box Moderately low pressure drop, \Box Standard pressure drop. Was an analysis performed for using a lower pressure drop to reduce pump size and energy use? _____ Attach analysis. How were use?_____ Attach analysis. How were pipe losses determined? ____rule of thumb, ____detailed take-off and calculation, ____other. Are pipe circuits designed to be close to being self-balanced proportionally, to minimize the restriction (head loss) of balancing valves and circuit setters? Describe the pumps chosen. Primary: Secondary:_____ Are they equipped with premium energy-efficient motors? Why or why not?_____

How large of safety factor was used in the pump sizing? _____ What was the over-sizing rationale for the pumps? \Box Potential system expansion, \Box Safety factor, □ Both of above.

ASHRAE 90.1 doesn't allow flow throttling with a balancing valve more than 3 hp. Will this system comply?

Would a more detailed head loss calculation likely result in a smaller safety factor and pump?

Describe any standby or redundant pumps and their operation.

Will the control sequences allow for automatic changeover to the lag or standby pump upon pump failure or will manual valving be required? Explain fully.

Primary heating water pumps:

Secondary heating water pumps: _____

How is the secondary heating water capacity controlled? \Box Variable speed drives (VFD) on pumps, D Bypass valve(s). If by bypass valves, explain the rationale for not using variable speed drives and attach the economic analysis.

For VFD's, how will the pump speed be controlled?
Constant water pressure setpoint, □ Reset water pressure setpoint. If the pressure is not reset, why not?_____

For a VFD on pressure reset, how low of speed will the pump be allowed to go? Is this is as low as possible? Explain.

Will heating water flows be monitored? \Box Primary flow, \Box Secondary flow. If not, explain.

How is supply water temperature controlled? □ 3-way mixing valve, □ Other _____

4.4 Boiler System Sequence of Operations and Operating Parameters Mech Engr

Spec Dev

Attach a full and comprehensive sequence of operations, including but not limited to the following conditions and systems, including all interactions:

- List parameter conditions that initiate start-up.
- Provide a detailed narrative of the full sequence and status and action of EACH component during EACH stage of start-up: low load, medium load, high load, staging

Model Commissioning Plan and Guide Specifications

to next boiler, up to full load on all boilers, and then back down again to OFF condition. List all setpoints, delays, parameters, lockouts, conditions, etc., that are required to pass through each stage. The components for which status will be given at each stage are: boiler stage and load, primary, secondary pump status, speed and flow, pipe pressures and setpoint resets.

Describe the sequences for the following:

- Boiler optimization staging.
- Temperature lockouts.
- Status and sequence at power outage and fire alarm.
- Effects of manual shutoff or failure of boiler, primary pump and secondary pump.
- List all alarms.
- Include full sequences and setpoints for capacity and pressure control of the secondary heating water system.
- List the full sequence of operation for all energy conserving strategies, including their setpoints and parameters.
- Weekend operation.
- Normal occupied and unoccupied modes.
- Warm-up mode

Equipment manufacturers' sequences and control drawings may be included, but will generally require additional narrative. Flow charts may be used if sufficiently detailed. Narrative and flow chart examples are found in Section 4 of the instructions.

For the boiler and pumps, the sequences are expected to be about _____ single spaced, typewritten pages.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

5.1 Design Intent		Mech Engr	Design Dev
What is this system or component used for?		•	-
Systems Description		Mech Engr	Const Doc
Briefly describe the system:			
5.2 Basis of Design-Compo		Methods for Meeting Mech Engr	g the Design Intent Const Doc
Give size, quantity, and other spe the objectives.	cific information and	the areas served, and	how it will meet
Plant			
Number of units of this type:	EER (cooling)	: Tons coo	ling each unit:
Accumulated capacity for all unit	s of this type: Total to	ons cooling:	
MBtu heating: H	-	-	
Supply Fans and Capacity C	Control		
Total CFM for packaged systems	of this type:		
□ Inlet vanes □ VFD □ Vane	• •		
Motor efficiency:Std. effic.			
Return Fans / Exhaust Fans	/ Poliof Domnoro		

Describe return fans, exhaust fans, or relief dampers, if any, and their function.

Model Commissioning Plan and Guide Specifications

Describe how building static pressure is controlled (setpoints, etc.).

VFD control:

Which fans does each VFD control? □Supply □ Return/Exhaust

Location of duct static-pressure sensor (distance from fan and proximity from branch takeoffs up and down stream):

Duct static pressure: Fixed setpoint / Reset or variable

Expected duct static pressure setpoint (or average if reset):

Total pressure across fan at design flow: _____[discharge pressure - suction pressure (negative)]

Minimum fan capacity (lower frequency limit setting in VFD, % of max.)

Are VFD settings \Box monitored or \Box controlled by the BAS system? (check one)

Method used for sizing ducts _____equal friction _____static regain

Note: Equal friction gives smaller ducts and higher pressure requirements. If equal friction was used, was a calculation made to make sure the increased pressure and subsequent increase in energy use by the fan is more than offset by the savings in duct materials?_____

Compressor(s)

Number of compressors per RTU: _____. Low ambient compressor package? _____

Number of condenser fans per RTU: _____. Locked out during morning warmup? _____

Compressor capacity control; general description:

Cooling coil

Provide general description and any special features (high efficiency, face velocity, low pressure drop, etc.). Was a low pressure drop coil analyzed? What were the results?

Dampers

Describe the dampers and their function.

Model Commissioning Plan and Guide Specifications

Smoke and Fire Dampers

Describe the smoke and fire damper system (location and operation).

Setpoint Temperatures

Supply air (SA): _____ SA reset (see strategy sequence): _____ Mixed air: _____

Filters

Provide general description and any special features (low pressure drop, etc.). Were low pressure drop filters analyzed? What were the results?_____

Heating System

Describe type, fuel, perimeter reheat, areas served, etc.

Economizer and OSA Dampers

□ Enthalpy □ Dry Bulb □ Integrated □ Economizer is first stage of cooling

Number of damper positions: \Box or \Box infinite.

Dampers closed during warm-up? \Box Yes / \Box No

If dry-bulb type: OSA changeover temperature: _____

If enthalpy: OSA enthalpy changeover: _____

Other special features of the RTU:

How will the fresh air rate be maintained at low supply air volumes of the VAV system? Are perimeter zones treated differently than interior zones (reheat box damper settings, etc.)?

Model Commissioning Plan and Guide Specifications

How is the RTU controlled?

 \Box Stand-alone controllers with thermostats in zones

□ Above, but enabled/disabled by central building automation system (BAS)

□ Integrated into BAS as below:

Point or Feature	BAS Monitors	BAS Can Change SetPts	Point or Feature	BAS Monitors	BAS Can Change SetPts
Mixed air temp.			Compressor stage		NA
RA temp.		NA	Bldg. static pressure		
SA temp			Temp. lockouts		
SA reset parameters			CO ₂ for OSA control		
RA enthalpy		NA	Htg. coil position		NA
DA static pressure			Optimum start	NA	
Duct static pressure			Night purge	NA	
Supply fan statuc		NA	Demand limit	NA	
Ret./Exh. fan status		NA	Alarms (list):		
Supply fan speed		NA	-Dirty filter		
Ret./Exh. fan speed		NA	-Compressor fail		
Supply fan cfm		NA	-Fan loss of air		
Ret./Exh. fan cfm		NA	-High DA pressure		
Inlet vane position		NA	-Fire/smoke		
Filter Diff. pressure			-Emerg. shutdown		NA
Occup. schedule override			OSA compensation for VAV		
Night low limits			OSA economizer		

Integration of Control and Monitoring Points With the BAS

Describe other equipment tied to the ON/OFF status of the RTU (exhaust fans, etc.)

5.3 RTU Sequence of Operations and Operating Parameters

Mech Engr

Spec Dev

Provide a full and comprehensive sequence of operations, including but not limited to the following conditions and systems, including all interactions:

Conditions or Modes

- start-up .
- shut-down
- normal occupied & unoccupied periods ٠
- warm-up
- temperature lockouts
- compressor and condenser staging .
- override sequences
- winter/summer changeover
- weekend operation
- normal operation heating
- normal operation cooling
- through deadband ranges
- alarms: fire, smoke, shutdown, equip. failure, temp. and pressure limits, etc.
- all energy conserving strategies (optimum start/stop, resets, etc.)
- fire alarm

Include the position or status at which each component resides at start-up, what occurs at fire alarm, provide all setpoints and control parameters, including all time delays. In the sequences, describe what controls what. That is, what components must be ON or at certain conditions in order for others to operate. Equipment manufacturers' sequences and control drawings may be included, but will generally require additional narrative. Flow charts may be used if sufficiently detailed. Narrative and flow chart examples are found in Section 4 of the instructions.

For this RTU system, these sequences are expected to be about ______ single spaced, typewritten pages.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

PECI D_INTENT.V08, 10/22/2008

Systems supply fans

exhaust fans

.

- return air and exhaust dampers •
- supply air capacity control
- economizer and OSA dampers
- building static pressure control
- coil valve operation •
- CO₂ sensor OSA control
- smoke dampers

6 VAV Terminal Units—Air Conditioning Only (TU_AC)

6.1 System Description	Mech Engr	Design Dev
Briefly describe the TU:		
Number of TU_ACs:	pe of area served:	
TU type: D pressure independent	/	
Minimum air damper position:	% open.	
Are these fan powered?	□ Parallel, □Series. Why?	
TU measures air flow via total	static pressure sensors. Y/N	
□ Cross, □ Linear flow stat	Other flow method:	
Describe TU controller type: _		
Damper actuator type: □ Elec	□ Pneumatic.	
What noise considerations wer	ed when specifying the TU's?	

Integration of Control and Monitoring Points With the BAS

Point or Feature	BAS Monitors	BAS Can Change SetPts	Point or Feature	BAS Monitors	BAS Can Change SetPts
TU air flow			TU air flow max.		
TU air flow min.					

6.2 TU_AC Sequence of Operations and Operating Parameters

Mech Engr Spec Dev

Provide a full and comprehensive sequence of operations (including all sequences, deadband, alarm actions, etc.) on a separate sheet(s) and attach to this section of the form.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

7.1 System De	scription	Mech Engl	r Design Dev
Briefly describe the	TU:		
Number of TU_RH	s: Type of	area served:	
TU type: 🗖 pressu	re independent / \Box	pressure dependent, DAV	∇ , \Box constant volume
Why?		Parallel,	
		nize reheat?	
What provisions wi	ll be made to minim	nize system simultaneous heat	ing and cooling?
TU measures air flo	w via total and stat	ic pressure sensors. Y/N	
□ Cross, □ Linea	ar flow station?	Other flow method:	
Minimum air damp	er position:	_% open.	
		ating and space setpoint is not	
Describe TU contro	ller type:		
Damper actuator typ	pe: □ Electric, □	Pneumatic.	
Heating coil type: D	☐ hot water, □ ele	ctric resistence and stages	·
Describe heating co	il valve: 🛛 Two p	osition, D Modulating.	
Heating valve actua	tor type: 🗖 Electric	e, □ Pneumatic.	
Do some units have	3-way valves? Wh	ıy?	
Automatic flow con	trol valve? De	scribe:	
What noise conside	rations were used w	hen specifying the TU's?	

Model Commissioning Plan and Guide Specifications

PECI D_INTENT.V08, 10/22/2008

Point or Feature	BAS Monitors	BAS Can Change SetPts	Point or Feature	BAS Monitors	BAS Can Change SetPts
TU air flow			TU air flow max.		
TU air flow min.			Valve position		

Integration of Control and Monitoring Points With the BAS

7.2 TU_RH Sequence of Operations and Operating Parameters

Mech Engr

Spec Dev

Provide a full and comprehensive sequence of operations (including heat lockout parameters, heating valve sequences, deadbands, alarm actions, etc.) on a separate sheet(s) and attach to this section of the form.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

8 Heat Recovery Unit (HRU)

8.1 Design Intent	Mech Engr	Design Dev
Describe the purpose of the HRU:		
8.2 System Description	Mech Engr	Design Dev
Briefly describe the system:		
On which air handlers does this system opera	te?	

Integration of Control and Monitoring Points With the BAS

Point or Feature	BAS Monitors	BAS Can Change SetPts	Point or Feature	BAS Monitors	BAS Can Change SetPts

8.3 HRU Sequence of Operations and Operating Parameters

Mech Engr Spec Dev

Provide a full and comprehensive sequence of operations (including seasonal variations) on a separate sheet(s) and attach to this section of the form.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

9.1 Design Intent	Mech Engr	Design Dev
What is this system or component used for?		
General Description	Mech Engr	Design Dev
Briefly describe the system or component.		
9.2 Basis of Design-Component Description	on and Methods for Meeting Mech Engr	the Design Intent Design Dev
Areas served:	-	
Number of ACUs: Sizes (tons)		_ EER:
Location of ACU:		
□ Ducted system or □ discharge only?		
How is heat rejected? Cooling tower / D	X air-cooled condenser / \Box (Other
Location of condenser:		
Humidifier description:		
Reheat description:		
Is there a 3-way valve in the unit? Will t drives on the chilled water system?		
How is the ACU controlled?		
		m
□ Stand-alone controllers with thermos □ Same, but enabled/disabled by centra □ "fully" controlled by BAS Does supply air enter this space from the main l	· ·	Jo
□ Same, but enabled/disabled by centra	HVAC system? □ Yes / □ N	Vo

Model Commissioning Plan and Guide Specifications

In	tegration of Co	ntrol and M	Monitoring Poin	ts With the BAS	
Point or Feature	BAS Monitors	BAS Can Change SetPts	Point o Featur		BAS Can Change s SetPts

9.3 ACU Sequence of Operations and Operating Parameters

Mech Engr

Spec Dev

Provide a full and comprehensive sequence of operations (including setpoints, unoccupied, occupied, fire alarm periods, etc.) on a separate sheet(s) and attach to this section of the form.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

10.1 Design Intent	Elec Engr	Design De
Briefly describe the system:		
What is the primary reason for using daylig	hting? □ energy savings / □ vi □ visual light quality	ew/aesthetics
What budget limitations were there?		
10.2 Basis of Design	Elec Engr	Design Dev
System type: \Box continuous dimming / \Box s	tepped dimming in steps	
Describe related architectural features such interior finishes, etc.		skylights, special
	0/	
The system is controlled by:	/ □ stand alone controllers k plane: <u>Design Foot</u>	
The system is controlled by: \Box main BAS	/ □ stand alone controllers	
The system is controlled by: \Box main BAS What is the light level setpoint(s) at the wor	/ □ stand alone controllers k plane: <u>Design Foot</u>	
The system is controlled by: □ main BAS What is the light level setpoint(s) at the wor	/ □ stand alone controllers k plane: <u>Design Foot</u>	
The system is controlled by: main BAS What is the light level setpoint(s) at the wor Area	/ □ stand alone controllers k plane: <u>Design Foot</u> <u>Candles</u> 	
The system is controlled by: main BAS What is the light level setpoint(s) at the wor Area How deep into the building do the lights dir	/ □ stand alone controllers k plane: <u>Design Foot</u> <u>Candles</u> n?ft.	
The system is controlled by: main BAS What is the light level setpoint(s) at the wor <u>Area</u> How deep into the building do the lights dir Are the dimming rates the same across this	/ □ stand alone controllers k plane: <u>Design Foot</u> <u>Candles</u> n?ft. distance? □ Yes / □ No	
The system is controlled by: main BAS What is the light level setpoint(s) at the wor Area How deep into the building do the lights dir Are the dimming rates the same across this Explain:	/ □ stand alone controllers ·k plane: <u>Design Foot</u> <u>Candles</u> n?ft. distance? □ Yes / □ No	
How low are the lights allowed to dim? The system is controlled by: □ main BAS What is the light level setpoint(s) at the wor <u>Area</u> How deep into the building do the lights dir Are the dimming rates the same across this Explain: What areas of the building have dimming co	/ □ stand alone controllers ·k plane: <u>Design Foot</u> <u>Candles</u> n?ft. distance? □ Yes / □ No	

How many zones and controllers (light sensors) are there?
How do occupants override the dimming?
Who has access for adjusting light levels?
Where are these adjustments made?
Where are the sensors located?
10.3 Sequence of Operations and Operating Parameters

Y ľ γ

Elec Engr

Spec Dev

Provide a full and comprehensive sequence of operations (including setpoints and occupied and unoccupied conditions, etc.) on a separate sheet(s) and attach to this section of the form.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

11 Lighting Sweep Control		
11.1 System Description Briefly describe the system:		
11.2 Operating Parameters	Elec Engr, Ctrls Cont,	Spec Dev
The system is controlled by: \Box Main BAS / \Box S	Stand-alone controller	
How many zones will there be? Des	scribe the zones	
What is the floor area of the largest zone?		
How many sweeps will there be?		
At what times? Weekdays: Saturday: Sunday:		
Describe the type of switching system that occupazone.	ants will use to turn the lights bac	k on in their
What is the maximum override duration?	hours	
Who will be able to globally override the sweeps	or change the schedule?	
How will the sweeps work with housekeeping sch	nedules?	

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

12 Building Automation System (BAS)

12.1 Design Intent

Mech Engr, Ctrls Cont Design Dev

Briefly describe the system: _____

Why was this system chosen over others considered?

Describe any budget limitations:

How important was energy conservation in the decision of BAS type?_____

12.2 Basis of Design–Component Description and Methods for Meeting the Design Intent Mech Engr, Ctrls Cont, Const Doc

Central system is: □ DDC, □ pneumatic

Valve actuators: \Box electric, \Box pneumatic. AHU damper actuators: \Box electric, \Box pneumatic

VAV terminal box damper actuators: □ electric, □ pneumatic

Fire / smoke damper actuators: \Box electric, \Box pneumatic

User interface:

graphical display of components

Limitations of the modules or features specified, compared to the higest model line system:

Check the systems that the BAS will control (vs local equipment. packaged controllers). Refer to the individual system section for a complete description of the points and their control by the BAS

Model Commissioning Plan and Guide Specifications

	Virtually Full Control	Partial Control	Enable/Disable Only	Monitor Only
Rooftop packaged unit				
Air handler unit				
Terminal units				
Economizer functions				
Boiler plant				
Heating water pumping system				
Chiller plant				
Chilled water pumping system				
Cooling tower				
Condenser water pumping				
Terminal unit settings				
Heat recovery unit				
Daylighting setpoints				
Lighting sweep control				
Exterior lighting				
Computer room HVAC unit				
Fan coil unit and condenser				
Unit heaters				
Smoke and fire control				
Emergency power system				
UPS power system				
Service water heating pump				

Location of user interface:

Type of user interface:

□ Permanent on-site computer terminal

- □ Plug-in portable computer
- Remote terminal of ______
- \Box Keypad only

Describe parties who will be able to change schedules only:

Describe parties who will have full access to system:

Model Commissioning Plan and Guide Specifications

Check the energy conserving control strategies that will be operational in this building through the BAS.

□ Holiday scheduling	□ Occupancy-based outside air control
□ Zonal scheduling	DX compressor optimization
□ Sequential startup of equipment	□ Mixed air temperature control
□ Lighting sweep	□ Boiler staging and optimization
□ Night setup/setback	□ Heat element (coil) staging
□ Optimum start	□ Hot water reset
□ Optimum stop	□ Heat recovery option control
□ Hot & cold deck reset (supply air)	□ Water-side economizer control
□ Chilled water reset	□ Variable speed pump control
□ Chiller staging and optimization	□ Occupancy based HVAC control
□ Cooling tower component staging	□ Terminal regulated air volume (TRAV)
□ Air-side economizer control	□ Thermal storage control
□ Night ventilation purge / pre-cooling	□ Demand limiting or load shedding
CO2 outside air rate control	□ Duty cycling of equipment
□ VAV control-pressure independent	□ DHW recirculation pump control
□ VAV control-pressure dependent	□ DHW temperature control
Duct static pressure reset	□ Full trending capabilities
□	□
□	□
Ο	□

List all special monitoring points installed for diagnostic, performance verification and trouble shooting purposes, which are not needed to execute the control sequences and strategies?

12.3 BAS Sequence of Operations and Operating Parameters

Mech Engr

Spec Dev

Provide a full and comprehensive sequence of operations, including setpoints, deadbands, etc. List full control sequences for all control strategies. Refer to sequences already provided in other component sections, if applicable. List on a separate sheet(s) and attach to this section of the form.

Include the position or status at which each component resides at start-up, provide all setpoints and control parameters, including all time delays. In the sequences, describe what controls what. That is, what components must be ON or at certain conditions in order for others to operate. Equipment manufacturers' sequences and control drawings may be included, but will

Model Commissioning Plan and Guide Specifications

generally require additional narrative. Flow charts may be used if sufficiently detailed. Narrative and flow chart examples are found in Section 4 of the instructions.

Note: Complete BAS description, points list with all details, program listing, etc. are not part of the design intent, but will be required as part of the O&M documentation.

12.4 Points List

Mech Engr, Ctrls Cont Spec Dev

For this design intent, list all points in a table that includes at *least* the information shown in the following example table.

Controlled System	Point Abbr.	Point Description	Display Units	Control or Setpoint Y/N	Monitoring Point Y/N	Intermediate Point Y/N	Calculated Point Y/N

Key:

Point Description: DB temp, airflow, etc.

Control or Setpoint: Point that controls equipment and can have its setpoint changed (OSA, SAT, etc.) **Intermediate Point**: Point whose value is used to make a calculation which then controls equipment (space temperatures that are averaged to a virtual point to control reset).

Monitoring Point: Point that does not control or contribute to the control of equipment, but is used for operation, maintenance, or performance verification.

Calculated Point: "Virtual" point generated from calculations of other point values.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

	Split				
13.1	Design In	tent		Mech Engr	Design Dev
What	is this syster	n or compone			
Syste	ems Descr	iption		Mech Engr	Const Doc
Briefl	y describe th	e system:			
□ Hea □ Rea □ Ho	AC only at Pump and sistance coil water coil s furnace	AC	 VAV Constant volut Dual duct Multizone Other Other 	ne	
List eo	uipment an	d areas served	:		
13.2	Basis of I			and Methods for Meet	
13.2	Basis of I				ing the Design Intent
Give s		Design- Com	ponent Description	and Methods for Meet	ing the Design Intent Const Doc
Give s	ize, quantity jectives.	Design- Com	ponent Description	and Methods for Meet Mech Eng	ing the Design Intent Const Doc
Give s the ob Plant	ize, quantity jectives.	Design- Com	ponent Description	and Methods for Meet Mech Eng	ing the Design Intent Const Doc Id how it will meet
Give s the ob Plant Numb	ize, quantity jectives. er of units o	Design- Com	ponent Description	and Methods for Meeta Mech Eng and the areas served, an	ing the Design Intent Const Doc Id how it will meet
Give s the ob Plant Numb Accur	ize, quantity jectives. er of units o nulated capa	Design- Com y, and other sp f this type: city for all unit	ponent Description ecific information EER (cool its of this type: To	and Methods for Meethods for Meethods for Meethods for Meethods and the areas served, and the areas served, and the areas served areas served and the areas served areas ser	ing the Design Intent Const Doc ad how it will meet boling each:
Give s the ob Plant Numb Accur MBtu	ize, quantity jectives. er of units o nulated capa heating:	Design- Com y, and other sp f this type: city for all un	ponent Description ecific information EER (cool its of this type: To	and Methods for Meethods and the areas served, and the areas served, and the areas served, and the areas served for the	ing the Design Intent Const Doc ad how it will meet boling each:
Give s the ob Plant Numb Accur MBtu Areas	ize, quantity jectives. er of units o nulated capa heating: served:	Design- Com y, and other sp f this type: city for all un	ponent Description ecific information a EER (cool its of this type: To Heat Pump COP:	and Methods for Meethods and the areas served, and the areas served, and the areas served, and the areas served for the	ing the Design Intent Const Doc ad how it will meet boling each:
Give s the ob Plant Numb Accur MBtu Areas Com	ize, quantity jectives. er of units o nulated capa heating: served: pressor(s)	Design-Com , and other sp f this type: city for all uni and Conder	ponent Description ecific information EER (cool its of this type: To Heat Pump COP:	and Methods for Meethods and the areas served, and the areas served, and the areas served, and the areas served for the	ing the Design Intent Const Doc ad how it will meet
Give s the ob Plant Numb Accur MBtu Areas Com Numb	ize, quantity jectives. er of units o nulated capa heating: served: pressor(s) er of compro	Design-Com y, and other sp f this type: city for all uni and Conder essors per cond	ponent Description ecific information EER (cool its of this type: To Heat Pump COP:	and Methods for Meeth Mech Eng and the areas served, an ing): Tons co tal tons cooling: Gas efficiency: Low ambient compre	ing the Design Intent Const Doc ad how it will meet

Model Commissioning Plan and Guide Specifications PECI D_INTENT.V08, 10/22/2008

Evaporator / Cooling Coil

Provide general description and any special features (high efficiency, face velocity, low pressure drop, etc.). Was a low pressure drop coil analyzed? What were the results?

Supply Fans and Capacity Control

Total CFM for inside fan coil or air handler of this type:_____

\Box Constant volume \Box Inlet vane	s 🛛 VFD	□ Vane axial	□ Outlet damper	\Box Other:	
--	---------	--------------	-----------------	---------------	--

□ Evaporator fan cycles ON and OFF with compressor. Motor efficiency: ____Std. effic., ____Premium effic.

Dampers

Describe any dampers and their function.

Smoke and Fire Dampers

Describe the smoke and fire damper system (location and operation)._____

Setpoint Temperatures

Supply air (SA): _____ SA reset (see strategy sequence): _____

Filters

Provide general description and any special features (low pressure drop, etc.). Were low pressure drop filters analyzed? What were the results?_____

Heating System

Describe type, fuel, perimeter reheat, areas served, etc.

Model Commissioning Plan and Guide Specifications

Economizer and OSA Dampers

□ No OSA via this unit	Enthalpy	🗖 Dry Bulb	□ Integrated	Economizer is first
				stage of cooling

Number of damper positions: \Box or \Box infinite.

If dry-bulb type: OSA changeover temperature: _____

Other special features of the split system:

How will the fresh air rate be maintained at low supply air volumes of the VAV system? Are perimeter zones treated differently than interior zones (reheat box damper settings, etc.)?

How is the split system controlled?

□ Stand-alone controllers with thermostats in zones. Number of zones: _____

Above, but enabled/disabled by central building automation system (BAS)

□ Integrated into BAS as below:

Integration of Control and Monitoring Points With the BAS

Point or Feature	BAS Monitors	BAS Can Change SetPts	Point or Feature	BAS Monitors	BAS Can Change SetPts
RA temp.		NA	Compressor stage		NA
SA temp			Temp. lockouts		
SA reset parameters			CO ₂ for OSA control		
RA enthalpy		NA	Htg. valve position		NA
DA static pressure			Optimum start	NA	
Duct static pressure			Night purge	NA	
Supply fan statuc		NA		NA	
Ret./Exh. fan status		NA	Alarms (list):		
Occup. schedule override			Night low limits		
OSA economizer					

Model Commissioning Plan and Guide Specifications

Describe other equipment tied to the ON/OFF status of the split system unit (exhaust fans, etc.)

13.3 Split System Sequence of Operations and Operating Parameters

Mech Engr S

Provide a full and comprehensive sequence of operations, including but not limited to the following conditions and systems, including all interactions:

Systems

- supply fans
- supply air capacity control
- economizer and OSA dampers
- building static pressure control
- coil valve operation
- CO₂ sensor OSA control
- smoke dampers

Conditions or Modes

- start-up
- shut-down
- normal occupied & unoccupied periods
- warm-up
- temperature lockouts
- compressor and condenser staging
- override sequences
- winter/summer changeover
- weekend operation
- normal operation heating
- normal operation cooling
- through deadband ranges
- alarms: fire, smoke, shutdown, equip. failure, temp. and pressure limits, etc.
- all energy conserving strategies (optimum start/stop, resets, etc.)
- fire alarm

Include the position or status at which each component resides at start-up, what occurs at fire alarm, provide all setpoints and control parameters, including all time delays. In the sequences, describe what controls what. That is, what components must be ON or at certain conditions in order for others to operate. Equipment manufacturers' sequences and control drawings may be included, but will generally require additional narrative. Flow charts may be used if sufficiently detailed. Narrative and flow chart examples are found in Sections 4 of the instructions.

For this system, these sequences are expected to be about ______ single spaced, typewritten pages.

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

PECI D_INTENT.V08, 10/22/2008

Spec Dev

14 Emergency Power System		
14.1 Design Intent	Elec Engr	Design Dev
Briefly describe the system:		
emergency power and any UPS for each load o		purpose of the , life, safety loads?
14.2 Basis of Design-Component Description	and Methods for N	Neeting the Design Intent
	Elec Engr	Spec Dev
Generator		
Is the generator sized to be able to handle additional	l loads?	How many?
What is the maximum time it should take the genera street power is lost (seconds)?		power from the time
Is there an automatic generator exercizer?		
For how long should the generator be able to provid	le power without re	fueling?
Describe any special frequency and voltage regulati	on output requirem	ents for the generator
Power Quality	Elec I	Engr Spec Dev
Describe any special power quality concerns or con-	siderations (sensitiv	ve equipment, etc.).
UPS		
How many UPS systems are there? List all, including	ng integral batterie	s in equipment
What kind of UPS bypass will be used on the stand-	alone UPS?	
Emergency Power and UPS Schedule	Elec Engr	Spec Dev
In the following table, list each load on emergency p discharge time. List all the loads first that are only o		
Model Commissioning Plan and Guide Specification	าร	

		UPS		
Equipment / Loads	On Emerg. Power (Y/N)	On UPS (give UPS ID)	Stand Alone UPS (SA) or Integral (I)	Full Load Discharge Time (min.)

Number of sheets attached to this section: _____

Model Commissioning Plan and Guide Specifications

15 OTHER STSTER	is needing sample formats
Fire Alarm and Protection	
Systems	
Service Water Heating	
Air Handler Units	Capacity control
	Supply fan
	Return/exhaust fan and dampers
	Heating and cooling coil valves
	Economizer and OSA and return air dampers
	Mixed air control
Exhaust Fans	

15 OTHER SYSTEMS NEEDING SAMPLE FORMATS

Model Commissioning Plan and Guide Specifications