138「多くの三次方程式を一括で解くプログラム」

「2014年 第24回日本数学オリンピック本選問題 第5問」で、多くの3次方程式を解く必要に 迫られ、エクセルでプログラムを作成したのでここに紹介したい。

3次方程式の根の公式に従って、いくつかの式を経れば比較的容易に根(近似解)を得ることができ、ネット上には、数々の類似プログラムが公開されている。しかし、今回は多くの係数の組み合わせに対応した多数の根が必要であり、1つの根を得るのに多くのスペースを割り当てることが難しい。そこで、1つのセルで解を求められるように工夫したのがポイントである。

3次方程式は3つの根を持ち、その根は以下の公式(カルダーノの公式)で与えられる。

3次方程式の一般形は、 $ax^3 + bx^2 + cx + d = 0$ で表され、その根 x_1 , x_2 , x_3 は次式で与えられる。

$$p = \frac{-b^2 + 3ac}{9a^2}$$
, $q = \frac{2b^3 - 9abc + 27a^2d}{54a^3}$ としたとき、 $x_1 = \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \sqrt[3]{-q - \sqrt{q^2 + p^3}} - \frac{b}{3a}$ $x_2 = \omega^3 \sqrt{-q + \sqrt{q^2 + p^3}} + \omega^2 \sqrt[3]{-q - \sqrt{q^2 + p^3}} - \frac{b}{3a}$ $x_3 = \omega^2 \sqrt[3]{-q + \sqrt{q^2 + p^3}} + \omega^3 \sqrt{-q - \sqrt{q^2 + p^3}} - \frac{b}{3a}$ ここで、 $\omega = \frac{-1 + \sqrt{3}i}{2}$ (1 の 3 乗根の 1 つ)、 $\omega^2 = \frac{-1 - \sqrt{3}i}{2}$ である。

上記の式に基づきプログラムを作った。

ただし、 $\sqrt[3]{-q+\sqrt{q^2+p^3}}$, $\sqrt[3]{-q-\sqrt{q^2+p^3}}$ において、 $q^2+p^3>0$ の場合 $-q-\sqrt{q^2+p^3}$ が負になり、 $-q+\sqrt{q^2+p^3}$ が正になる場合があり、 $\sqrt[3]{-q+\sqrt{q^2+p^3}}$ が実数、 $\sqrt[3]{-q-\sqrt{q^2+p^3}}$ が複素数となる。その際 $\sqrt[3]{-q}$ の計算式が異なり複雑である。

そこでその解決として、
$$\sqrt[3]{-q-\sqrt{q^2+p^3}} = \frac{-p}{\sqrt[3]{-q+\sqrt{q^2+p^3}}}$$
 であることに気付き、 $-q+\sqrt{q^2+p^3}$

の式だけで計算を進めることができるようにした。

エクセル上での複素数の計算は、実数の計算と異なる。

エクセルにおける複素数は、 $a + bi \rightarrow COMPLEX(a, b, "i")$ と表し、

複素数の掛け算は、実数の掛け算 $a \times b$ に対し、

 $(a_1 + b_1 i) \times (a_2 + b_2 i) \rightarrow \text{IMPRODUCT} (COMPLEX(a_1, b_1, "i"), COMPLEX(a_2, b_2, "i")) とする。$

IMPRODUCT は「複素数×複素数」、「実数×複素数」を計算する場合、また、計算過程で実数か複素数か不明な場合でも、IMPRODUCT は実数を a+0i と考えることによって、実数×実数にも使え全ての掛け算に共通に使うことができる。

以下、エクセルによる計算過程のプログラムを記す。

$a = \langle A1 \rangle, \ b =$	説明						
上記 〈A1,B1,C1,D1〉 た	Mr 91						
$p = \frac{-b^2 + 3ac}{9a^2}$	(-B1^2+3*A1*C1)/(9*A	1^2)					
$a = \frac{2b^3 - 9abc + 27a^2d}{a^2}$	(2*B1^3-9*A1*B1*C1+	27*A1 ² *D1)					
$q = {54a^3}$	/(54*A1^3)						
$-\frac{b}{3a}$	-B1/(3*A1)						
$q^2 + p^3$	B5^2+B4^3						
$\sqrt{q^2+p^3}$	IMCORT (DO)		IMSQRT は複素数の平方根を表す (実				
	IMSQRT(B8)		数, 複素数共通)				
$-q + \sqrt{q^2 + p^3}$	TMCIM (DE DO)		IMSUM は複素数の加算を表す(実数,				
	IMSUM(-B5, B9)		複素数共通)				
	TWARG (DAO)		IMABS は絶対値を表す(実数、複素数共				
$-q + \sqrt{q^2 + p^3}$ の絶対値	IMABS (B10)		通、複素数の時 $a + bi \rightarrow \sqrt{a^2 + b^2}$)				
同絶対値の3乗根	B11^(1/3)						
<u> </u>	IMARGUMENT (B10)		IMARGUMENT は複素数の偏角を表す				
$-q + \sqrt{q^2 + p^3}$ の偏角	IMARGUMENI (DIU)		(実数,複素数共通、実数のとき 0)				
同偏角の 1/3	B13/3						
3 7	COMPLEX (B12*COS (B14),B12*SIN(B14)	COMPLEX(a, b, "i")で a + bi を表す				
$\sqrt[3]{-q + \sqrt{q^2 + p^3}}$,"i")		$e^{i\theta(\text{GE},\theta)} = \cos\theta + i\sin\theta$				
$-p/\sqrt[3]{-q+\sqrt{q^2+p^3}}$	TMDTV (1 1 D4 D1 E)		IMDIV は複素数の割り算を表す				
	IMDIV(-1*B4, B15)		IMDIV(a + bi, c + di) = (a + bi)/(c + di)				
$\omega \sqrt[3]{-q + \sqrt{q^2 + p^3}}$	IMPRODUCT (COMPLEX		COMPLEX(-1/2,3 ⁰ .5/2,"i")は				
	(-1/2, 3 ⁰ . 5/2, "i"), B15)		$(-1+\sqrt{3}i)/2$ を表す				
$\omega^2 \sqrt[3]{-q - \sqrt{q^2 + p^3}}$	IMPRODUCT (COMPLEX		COMPLEX(-1/2, -3^0.5/2, "i")は				
	(-1/2, -3^0. 5/2, "i")	, B16)	$(-1-\sqrt{3}i)/2$ を表す				
3 3 3	${\sqrt{2+3}}$ b	IMSUM	これまで計算したものを加えたも				
$x_1 = \sqrt[3]{-q + \sqrt{q^2 + p^3} + \sqrt[3]{-q^2}}$	$q - \sqrt{q^2 + p^3 - \frac{3a}{3a}}$	(B6, B15, B16)	のが解となる (実数, 複素数共通)				

以上の式を全てまとめ、1つのセルで根を求めるのが次のプログラムである。

```
=IMSUM(IMDIV(COMPLEX((IMABS(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3)^2+4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3)))^(1/3)*COS(IMARGUMENT(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3)))^1/3), CIMABS(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2+4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2/4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2/4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))^3/3), "i"), 3*2^1/3)*A1), IMDIV(-1*2^1/3)*(3*A1*C1-B1^2)^3/3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2/3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3)))^1/3)*COS(IMARGUMENT(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2+4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2/3), (IMABS(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2+4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3)))^1/3)*SIN(IMARGUMENT(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^3))^2+4*(3*A1*C1-B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3)))^1/3)*SIN(IMARGUMENT(IMSUM(IMSQRT((-27*A1^2*D1+9*A1*B1*C1-2*B1^2)^3), -27*A1^2*D1+9*A1*B1*C1-2*B1^3))), "i")), -1*B1/(3*A1))
```

上の式により、3次方程式の根の1つが1つのセルで計算される。従って、3次方程式の3つの根は3つのセルで済み、以下の表はa,bのそれぞれの組み合わせで計算して求めたものである。

a b	0	0.01	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	0.95	0.99	1
	kに関係なく	9800.041	360.233	80.545	16.439	6.910	4.528	4.000	4.528	6.910	16.439	80.545	360.233	9800.041	kに関係なく
	成り立つ	-1.041	-1.230	-1.533	-2.376	-3.282	-3.834		-3.834	-3.282	-2.376	-1.533	-1.230	-1.041	成り立つ
0.01	9800.041		547.489	95.842	17.248	6.980	4.536	4.031	4.661	7.453	19.555	124.312	996.243	9800.041	
	-1.041	-1.201	-1.378	-1.711	-2.664	-3.687	-4.279		-4.242	-3.600	-2.556	-1.637	-1.321	-1.041	
0.05	360.233	547.489		263.257	21.378	7.245	4.563	4.201	5.434	11.216	55.382		360.233		
	-1.230	-1.378	-2.309	-2.501	-4.104	-5.847	-6.596	-6.707	-6.335	-5.073	-3.199	-2.309	-1.230		
0.1	80.545	95.842	263.257		29.824	7.521	4.599	4.599	7.521	29.824		80.545			
	-1.533	-1.711	-2.501	-5.255	-6.483	-10.611	-11.441	-11.441	-10.611	-6.483	-5.255	-1.533			
0.2	16.439	17.248	21.378	29.824	29.500	7.722	4.843	7.722	29.500	29.824	16.439				
	-2.376	-2.664	-4.104	-6.483		-38.940		-38.940		-6.483	-2.376				
0.3	6.910	6.980	7.245	7.521	7.722	7.050	7.050	7.722	7.521	6.910					
	-3.282	-3.687	-5.847	-10.611	-38.940			-38.940	-10.611	-3.282					
0.4	4.528	4.536	4.563	4.599	4.843	7.050	4.843	4.599	4.528						
	-3.834	-4.279	-6.596	-11.441				-11.441	-3.834						
0.5	4.000	4.031	4.201	4.599	7.722	7.722	4.599	4.000							
0.5			-6.707	-11.441	-38.940	-38.940	-11.441								
0.6	4.528	4.661	5.434	7.521	29.500	7.521	4.528								
	-3.834	-4.242	-6.335	-10.611		-10.611	-3.834								
0 /	6.910	7.453	11.216	29.824	29.824	6.910									
	-3.282	-3.600	-5.073	-6.483	-6.483	-3.282									
0.8	16.439	19.555	55.382		16.439										
0.0	-2.376	-2.556	-3.199	-5.255	-2.376										
0.9	80.545	124.312		80.545											
	-1.533	-1.637	-2.309	-1.533											
0.95	360.233	996.243	360.233												
	-1.230	-1.321	-1.230												
0.99	9800.041	9800.041													
	-1.041	-1.041													
1	kに関係なく														
	成り立つ														

3次方程式の根を無理数で正確に求める場合、Wolfram alpha を使えば可能である。しかし、今回のように多くの数の組み合わせで、何組もの近似値を計算しようとすると不向きである。 式は非常に長いが、1つのセルに式を入れておけば瞬時に多くの根が計算でき利用価値が高い。 (2022.12.15)