
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 52, NO. 2, FEBRUARY 2005 201

Extraction of a Plasma Time-Activity Curve
From Dynamic Brain PET Images Based

on Independent Component Analysis
Mika Naganawa, Member, IEEE, Yuichi Kimura*, Member, IEEE, Kenji Ishii, Keiichi Oda, Kiichi Ishiwata, and

Ayumu Matani, Member, IEEE

Abstract—A compartment model has been used for kinetic
analysis of dynamic positron emission tomography (PET) data
[e.g., 2-deoxy-2-18F-fluoro-D-glucose (FDG)]. The input function
of the model [the plasma time-activity curve (pTAC)] was ob-
tained by serial arterial blood sampling. It is of clinical interest
to develop a method for PET studies that estimates the pTAC
without needing serial arterial blood sampling. For this purpose,
we propose a new method to extract the pTAC from the dynamic
brain PET images using a modified independent component
analysis [extraction of the pTAC using independent component
analysis (EPICA). Source codes of EPICA are freely available at
http://www5f.biglobe.ne.jp/~ukimura/Software/top.html]. EPICA
performs the appropriate preprocessing and independent com-
ponent analysis (ICA) using an objective function that takes the
various properties of the pTAC into account. After validation of
EPICA by computer simulation, EPICA was applied to human
brain FDG-PET studies. The results imply that the EPICA-esti-
mated pTAC was similar to the actual measured pTAC, and that
the estimated blood volume image was highly correlated with the
blood volume image measured using 15O-CO inhalation. These
results demonstrated that EPICA is useful for extracting the pTAC
from dynamic PET images without the necessity of serial arterial
blood sampling.

Index Terms—Compartment model, independent component
analysis, plasma time-activity curve extraction, positron emission
tomography.

I. INTRODUCTION

I N nuclear medicine, positron emission tomography (PET)
can yield quantitative information on the spatial distribu-

tion of administered radiopharmaceuticals. Recently, much in-
terest has been paid to the analysis of time sequences of the ra-
dioactivity in target tissues, which is known as a dynamic PET
study, because analysis can produce useful information about
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various physiological and biological processes in living tissues.
The processes related to the radiopharmaceuticals are expressed
by an underlying model, which is known as the compartment
model. For example, the behavior of 2-deoxy-2- F-fluoro-D-
glucose (FDG) can be described as follows [1], [2]:

(1)

In (1), is the concentration of FDG in the tissue at time
and is called the tissue time-activity curve (tTAC). The function

is called the plasma time-activity curve (pTAC) and is the
concentration of FDG in the plasma. is the total concen-
tration of FDG, and is the blood volume. The tissue impulse
response function is denoted by , and is a parameter
vector that describes the rate of transfer of the tracer. Note that

is assumed to be zero. The pTAC and tTAC can be considered
as the input and output functions of the compartment model,
respectively. The pTAC values are usually measured by serial
blood sampling using a catheter inserted in the brachial artery.
However, insertion of the catheter is uncomfortable and is some-
times painful for patients. It is also a time-consuming protocol
for a daily clinical scan. It is therefore of clinical interest to de-
velop a method for estimating the pTAC without the need for
serial arterial blood sampling.

The factor analysis [3], [4] has been proposed to moderate
or eliminate serial arterial blood sampling. Factor analysis
approach estimates the pTAC and the blood volume from
dynamic images; two methods have been proposed to estimate
the pTAC from actual dynamic cardiac PET images: factor
analysis of dynamic structures (FADS) [3] and independent
component analysis (ICA) [4]. However, a FADS estimation
with a nonnegativity constraint has nonunique solutions [5]
and therefore requires additional anatomical assumptions to
overcome the nonuniqueness. It is difficult to make effective
assumptions, because the vascular structure depends on the
anatomical situation. On the other hand, ICA seems to be an
attractive approach, because it can extract pTAC-related infor-
mation without any anatomical assumptions. To apply ICA to
dynamic PET images correctly, a well-designed preprocessing
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and the definition of an objective function to optimize pTAC
extraction are necessary. To address these problems, this paper
proposes a new method [extraction of the pTAC using indepen-
dent component analysis (EPICA)] to extract the pTAC from
dynamic FDG brain PET images using ICA with appropriate
preprocessing and objective function.

II. THEORY

Our proposed method, EPICA, is based on FastICA, pro-
posed by Hyvärinen [6]. The theory of FastICA is outlined in
Section II-A. Some problems arising from applying FastICA
to dynamic PET images are presented in Section II-B. In
Sections II-C and II.D, a method for overcoming the problems
is proposed. The steps taken in EPICA are summarized in
Section II-E.

A. FastICA

Consider a zero-mean, -dimensional random vector, ,
whose elements are assumed to be mutually statistically inde-
pendent [independent components (ICs)] as

The expectation of is denoted by . The ICs are un-
known, but linear combinations of the ICs
can be observed (where is the -dimensional random vector).
The ICA linear model can be written in the form

(2)

where is an -by- mixing matrix whose elements are un-
known mixing coefficients. The goal of ICA is to estimate the
original ICs, , from a given .

FastICA is a method for IC estimation using an iterative algo-
rithm [6] to maximize an objective function that measures inde-
pendence in the given data . In the FastICA algorithm, the first
step is a whitening of the given data . The whitening makes the
components uncorrelated from each other and their variances
equal unity, and it is performed by multiplying by a whitening
matrix, . The whitened vector, , is represented as

The matrix, , is an orthogonal matrix [7], and therefore ICs are
estimated as . See [6] for the details on whitening.
The th iteration of an optimization algorithm to maximize an
objective function, , is [8]

(3)

where is a column vector of the matrix is an estimate
at the th iteration, and is a derivative of the objective
function . The initial vector, , is given as a random vector
with unit norm. There are two approaches to estimate several
ICs in FastICA, the deflation approach and the symmetric ap-
proach. The deflation approach estimates ICs one by one, and
the symmetric approach estimates all ICs in parallel. The defla-
tion approach is more desirable in the case where a specific IC
is to be estimated [9]. Our proposed method, EPICA, adopts the
deflation approach.

Fig. 1. Illustration of the linear dynamic brain PET model. The dynamic
PET images are derived from sequential measurements of the radioactivity
after radiopharmaceutical administration. This illustration originated from
FDG, which is irreversible and tends to accumulate in brain tissues. The image
sequence was assumed to be a sum of the pTAC and tTAC components. Each
component consists of a time course and a contribution ratio to the voxels (the
blood volume image and the tissue image). The blood volume image shows
the spatial distribution of the blood vessels in the target tissue. The aim of the
EPICA technique is to estimate the time courses and the blood volume image
and tissue image using the measured dynamic PET image sequence.

B. Application of FastICA to Dynamic PET Images

The mixing process in (2) and independence are considered
in relation to dynamic PET data as given below. The value of
the th voxel of the PET image at time, , is described by

where is the total number of voxels, is determined by
the ratio of the tissue blood volume to the th voxel, is
determined by the scale of the tTAC values and the ratio of the
brain tissue to the th voxel, and and are the pTAC
and the tTAC, respectively. An illustration of the linear dynamic
PET model is shown in Fig. 1. Note that the pTAC is common
in the brain; however, the scale of the tTAC varies by voxels.
Therefore, is simply the ratio of blood volume to voxel
volume, and is determined by the ratio of tissue volume
to voxel volume and the scale of the tTAC in the voxel. The
history of the concentration of FDG at the th voxel, , can
be represented by

(4)

where , and are column vectors. In matrix notation,
(4) can be represented as

(5)

Here, is the dynamic PET image matrix, and in this paper,
and are the blood volume image and the tissue image,

respectively.
In the ICA model, and in (5) are regarded as the mixing

matrix and the source matrix, respectively. The dynamic PET
image sequence is assumed to be a linear combination of spa-
tially independent images, namely the blood volume image and
the tissue image. The pTAC is a column of the mixing matrix .
Note that independence is not assumed in time-activity curves
(TACs), but in their spatial distributions. If FastICA is applied to
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the measured dynamic PET images, the pTAC is not estimated
correctly. This is because the objective function is not appro-
priate to estimate the pTAC, and the probability distributions of
the voxel values in the blood volume image and the tissue image,
also known as image priors (the probability distributions that
generate the voxel values), are not known in advance. Therefore,
modifications to FastICA are required to estimate the pTAC ex-
actly. The performance of the objective functions are described
in Section III.A. The modifications consist of preprocessing the
measured dynamic PET images and the design of an appropriate
objective function for FastICA. The details of these modifica-
tions are described in Section II-C.

C. Preprocessing

The preprocessing of the measured PET images consists of
two steps: appending negative images and enhancing the differ-
ence of the statistical properties of the blood volume and tissue
images.

1) Negative Images: ICA assumes a zero mean source
signal; therefore, the mean values of the blood volume image
and the tissue image are required to be zero. The zero mean
data were generated by concatenating each data vector, ,
with its negative, . This negative image appending is
formed as

Note that this appending procedure is used here for the purpose
of explanation only and will never actually be performed. The
appended images have a perfectly symmetrical distribution, and
therefore the actual appending procedure makes no difference to
the results, but it enlarges the calculation cost.

2) Difference-Enhanced Images: FastICA estimates ICs
using an objective function that evaluates the non-Gaussianity
of the components. The probability distributions of the ICs are
non-Gaussian, and each has different statistical properties. The
distributions of the blood volume image, , and the tissue
image, , are not available as a priori information, because
these distributions depend on the subjects’ physiological con-
dition. To estimate pTAC using FastICA, a transformation is
required that enhances the difference of the probability distri-
butions between two images, ( and ). EPICA transforms
the dynamic PET data via standardization using the time inte-
gral of the absolute value of each voxel for the enhancement.
The time integral is calculated using the trapezoidal integration
method.

The effect of enhancement is explained using two anatomi-
cally reasonable constraints, as follows:

A1) The ratio of blood volume to whole brain volume is
very small (typically 2%–4% [1], [10], [11]).

A2) There are few voxels, typically 1%–2% of total voxels,
whose blood volume ratios are more than 30%.

The blood volume in each voxel represents the ratio of blood
volume to the voxel’s volume and can be measured using

O-CO inhalation [12].

The properties of the enhanced blood volume and tissue im-
ages are as follows. The time integral of the th voxel’s TAC,

, is described by

where denotes the time of the final frame, and and are
the pTAC and tTAC time integrals, respectively. The enhanced
TAC, , is represented by

where

The values of and are called the enhanced blood
volume and tissue images, respectively. We divided the proper-
ties of these images into two cases. In the first case, the tTAC
time integral is much larger than the pTAC time integral,

. The voxel values of the enhanced blood volume image
are mostly distributed around , whereas those
of the enhanced tissue image are around 1 or .
As described above, with two constraints (A1 and A2), almost
all voxels belong to the first case, because there are few voxels
where the pTAC time integral dominates. In the second case,
the pTAC time integral is much larger than the tTAC time in-
tegral, . In this case, the two enhanced images
are and . The effect of standardiza-
tion is summarized as follows: the time integral of the pTAC
is much smaller than that of the tTAC. Note that the time in-
tegral of the tTAC in each voxel depends on both the ratio of
tissue volume to voxel volume and the scale of the tTAC.
In addition, the blood volume is very small in almost all voxels.
Therefore, the time integrals of TACs of almost all voxels are
approximately equal to the time integral of tTAC. Standardiza-
tion forces the voxel values of the tTAC image to 1 or , and
those of the pTAC image to near zero. Consequently, the two en-
hanced blood volume and tissue images will have the following
properties.

P1) The distribution of the enhanced blood volume image
has a sharper peak and longer tails than the Gaussian
distribution. The long tail distribution has tails that
decay more slowly than those of the Gaussian distri-
bution [13]. The voxel values of the image vary from
approximately to 1.

P2) The voxel values of the enhanced tissue image are ap-
proximately divided into 1 and .

Fig. 2 shows the transformation of the blood volume image and
the tissue image of the simulated images by the enhancement.
The method for generating the simulated PET data is presented
in Section III-A.

The objective function of FastICA is designed to take the
properties of the two images into account.

D. Design of the Objective Function

The whitened blood volume image has long tails whose ab-
solute values are much greater than one as described in Sec-
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Fig. 2. The histograms of voxel values of the blood volume and tissue images generated from the simulated images. Standardization enhances the difference
between the distributions for the measured blood volume and tissue images. The distribution of the blood volume image was transformed into the distribution with
a sharper peak and longer tails, and the voxel values of the tissue image were concentrated to 1 or �1.

tion II-C2. On the other hand, the voxel values of the whitened
tissue image are near 1 or , the same as for the tissue image
before whitening. In general, the whitened blood volume image
has long tails and the whitened tissue image has short tails.
Therefore, the objective function needs to be sensitive to distri-
butions having long tails in order to extract the pTAC from the
whitened PET data. In choosing a fast-growing objective func-
tion, (for example, , where is the whitened PET
data), the blood volume image can be estimated by maximizing
the objective function. However, under the condition that the
variance is equal to one, the objective function is maximized
not by the true blood volume image, but by the estimated image
having long tails that include negative values, as shown in Fig. 3.
To prevent the voxel values from being concentrated near zero,
a penalty term is added to the objective function. The objective
function used for the pTAC extraction was

(6)

where and are positive parameters ( and
). The first term grows fast so that it is effective

in detecting the long tails, while the second term keeps the voxel
values from over-concentrating near zero.

EPICA adopts the fast fixed-point algorithm the convergence
of which is cubic. This algorithm does not always maximize the
objective function. The proposed objective function of EPICA is
designed to extract the pTAC by maximizing the objective func-
tion, but EPICA does not guarantee the extraction of the pTAC
when the objective function is minimized. Note that a deflation
approach has the drawback that the errors in the first estima-
tion accumulate in the subsequent estimations [9]. Because it
is important to accurately estimate the pTAC in this study, the
pTAC needs to be estimated as the “first” IC, by “maximizing”
the objective function. However, two solutions that maximize

Fig. 3. Histograms of voxel values of (A) the true blood volume image, and
(B) the estimated blood volume image using an objective function,G(u) = u ,
from the simulated PET images. The blood volume images derived only from
the original images are shown. The method of generating the simulated PET
data is presented in Section III-A. The tail of the estimated blood volume image
is longer than that of the true blood volume image, and the estimated blood
volume image has negative values. A term preventing the voxel values from
being concentrated near zero is required for the objective function, G(u).

or minimize the objective function are found by EPICA. The
shape of the first estimated TAC is helpful in deriving the unique
pTAC estimate because pTAC and tTAC have different shapes
from each other. If the shape of the first estimated TAC is dif-
ferent from the typical shape of a pTAC by visual inspection,
the EPICA technique is rerun with another random initial vector
until the first estimated TAC has a pTAC-like shape. The initial
vector is generated from a uniform random distribution. Usually,
the estimate of pTAC is obtained within one or two runs of the
proposed algorithm. Practically, the nonuniqueness in EPICA
does not affect the estimation of the pTAC.
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E. Procedure of EPICA

The EPICA procedure is summarized below.

Step 1) Append negative images to achieve the zero-mean
source signal that the ICA algorithm requires.

Step 2) Standardize each voxel’s TAC by the time integral
to emphasize pTAC-related information.

Step 3) To obtain a stable estimation, reduce the dimension
of the dynamic PET image sequence to two using
principal component analysis (PCA).

Step 4) Apply FastICA (a deflation approach) to the dy-
namic PET images.

Step 5) Adjust the scale of the estimated pTAC values using
one-point arterial blood sampling data.

In Step 3), eigenvalues of are calculated and is pro-
jected onto the plane spanned by the two eigenvectors that have
the largest eigenvalues [14]. This dimension reduction by PCA
often has the effect of reducing noise. Note that a random vector
having unit norm is taken as the initial estimation of ICA in Step
4). The expectations in (3) can be calculated exactly, because
is whitened, measured dynamic data, and is a defined function,
given in Section II-D. Because ICA cannot determine the scale,
sign, and ordering of the estimated ICs, Step 5) is required to
derive these quantities.

III. EXPERIMENTS

Computer-simulated dynamic PET and human FDG-PET im-
ages were used to evaluate the performance of EPICA.

A. Computer Simulations

Simulated PET images were generated based on three clin-
ical data sets. Dynamic FDG-PET images and arterial plasma
samples were measured simultaneously, and a blood volume
image was also acquired from O-CO inhalation in a succes-
sive scan. The simulated PET images contained seven slices, and
each slice consisted of 128 128 voxels. The frame arrange-
ment was determined based on the actual arterial plasma sample
timing used in the PET Center of the Tokyo Metropolitan Insti-
tute of Gerontology (TMIG). The timing of the arterial sampling
is shown in Table I.

A total of 24 arterial samplings were performed. The frame
arrangement of the dynamic PET images was based on the ar-
terial plasma sample timing: 0.3 s, s,

s, etc. The simulated PET images were calculated as
the sum of three components: a pTAC, a tTAC, and a noise com-
ponent, which are denoted by , and

, respectively.
The pTAC component was calculated from the measured

pTAC and blood volume using the following equation:

where represents the blood volume measured by PET at
the th voxel, and is the measured pTAC using arterial
blood sampling. The true pTAC and true blood volume image
correspond to and , respectively.

The calculation of the tTAC component consisted of the fol-
lowing four steps.

TABLE I
TIMING FOR ARTERIAL SAMPLING

Step 1) Apply a 5-by-5 averaging filter to the dynamic PET
images. Each voxel value is replaced by the aver-
aged value in a 5-by-5 block of neighbors.

Step 2) Estimate the kinetic microparameters, ,
of each voxel using an ordinal nonlinear least
squares algorithm.

Step 3) Calculate the noise-free tTACs, , by substi-
tuting the measured pTAC values and the estimated
parameters into (1).

Step 4) Multiply the tTAC component by the ratio of the
brain tissue volume to each voxel volume

The noise-free TAC at the th voxel, , was the sum of
the pTAC and the tTAC components.

The noise component was assumed to be Gaussian, with zero
mean and variance, , satisfying

(7)

where determines the noise level, and is the width of a
frame. The noise level was set to 30 to be comparable to the
clinical case.

Ten simulated data items were generated, and then EPICA
was applied. The difference between the data items is the noise
component. The noise was randomly generated according to (7).
The stopping criterion was that the norm of the difference be-
tween two successive columns of the separating matrix be less
than 0.0001 . The stepwidth is not re-
quired because FastICA is a fixed-point algorithm as shown in
(6). The scale of the estimated pTAC values was adjusted using
the peak of the true pTAC values. Fig. 4 shows the estimated
pTAC using EPICA compared with the true pTAC. The shape
of the estimated pTAC using EPICA is similar to the true pTAC
form. This figure presents an example of 10 results, and the re-
sults were consistent over all 10 simulated PET images. If the
parameters consisting of the objective function, and , were
changed, very similar results were obtained. An empirical value
of , and was used in this simulation.
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Fig. 4. Estimation results from the simulated PET images. pTAC-like estimate
by EPICA (solid line) and the true pTAC values (open circles). The estimated
pTAC values were scaled so that the peak value corresponded to the true pTAC
values. A magnified view of the first section of the PET data is shown in the inset.
The parameters of the objective function in (6) were � = 50 and m = 0:3.
The noise level of the simulated PET data was similar to the clinical noise level.
A total of 24 974 voxels were used to extract the pTAC.

Fig. 5. (A) The blood volume image estimated from the simulated FDG-PET
images using EPICA, and (B) the true blood volume image measured by PET
using O-CO inhalation. Blood volume image (B) was the image used to
calculate the pTAC component of the simulated PET data. The noise level of
the simulated PET data was similar to the clinical noise level. The parameters
of the objective function in (6) were � = 50 and m = 0:3.

For validation of EPICA, the estimated blood volume image
from EPICA and the true blood volume image were com-
pared, and the correlation coefficient of these two images was
calculated. Fig. 5 shows the estimated blood volume image
from EPICA and the true blood volume image. Although
the estimated blood volume image includes some negative
voxels, it is still very similar to the true blood volume image.
Fig. 6 shows the relationship of the voxel values between the
two blood volume images, which show a good correlation

with a correlation coefficient
of 0.83. The calculation time was approximately 10 s for the
128-by-128 scan with 30 slices of data using a PC with an Intel
Pentium III processor, a clock speed of 866 MHz, and 256 MB
of memory. The number of iterations was between 10 and 20.

To compare EPICA with the original general purpose Fas-
tICA, the estimation of the pTACs and the blood volume images

Fig. 6. Scatter plot of voxel values of the two blood volume images. The two
images are the blood volume image estimated from the simulated FDG-PET
images by EPICA, and the true blood volume image measured by PET using

O-CO inhalation, respectively (y = 1:09x � 7:06� 10 ; r = 0:83;n =
24974).

Fig. 7. The pTACs estimated: using kurtosis without standardization (dashed
line), using kurtosis with standardization (dash-dot line), and using proposed
objective function with standardization (solid line). The true pTAC values are
plotted (open circles).

from the simulated images was performed under the following
conditions: 1) using kurtosis-based FastICA without standard-
ization; 2) using kurtosis-based FastICA with standardization,;
3) using EPICA (proposed objective function). The estimated
pTACs are shown in Fig. 7. The deviation from the true pTAC
values was large when objective function was kurtosis. There
was little difference between the estimated blood volume
images.

B. Human FDG-PET Studies

FDG-PET scans were performed on volunteers using
a Headtome-V scanner (Shimadzu Co., Kyoto, Japan) in
two-dimensional mode. The sensitivity, nonuniformity, and at-
tenuation were corrected, and then the filtered-back projection
was applied for image reconstruction using a low-pass filter
with a full-width at half-maximum (FWHM) of 7 mm. The
number of frames collected was 27 and the frame arrangements
were 10 s 6, 30 s 3, 1 min 5, 2.5 min 5, and 5 min 8.
The frame intervals initially were set to be sufficiently short to
estimate the pulse-like shape of the pTAC. Thirty slices were
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Fig. 8. Clinical result of the pTAC estimates. The pTAC-like estimate using
EPICA (solid line) and the measured pTAC values (open circles). The estimated
pTAC shape was scaled so that the peak value corresponded to the measured
pTAC. A magnified view of the first section of data is shown in the inset.
The parameters of the objective function in (6) were � = 50 and m = 0:3.
A total of 55 400 voxels were used to extract the pTAC.

Fig. 9. (A) The blood volume image estimated from a human FDG-PET image
sequence using EPICA, and (B) the blood volume image measured by PET using

O-CO inhalation. The parameters of the objective function in (6) were� = 50

and m = 0:3.

acquired per scan, and each slice had 128 128 voxels. The 24
arterial blood samples were taken concurrently via an inserted
catheter in the brachial artery. The blood volume image was also
obtained using PET from O-CO inhalation [12]. Extracranial
voxels were manually masked before applying EPICA, and
the time delay between the arterial plasma samples and the
dynamic PET images was estimated from the averaged TAC
over the whole brain using a nonlinear least squares estimation.
Figs. 8 and 9 show the result of applying EPICA to human
FDG-PET images. EPICA successfully extracted the pTAC
from the FDG-PET images. The settings of the parameters (
and ) in (6) did not affect the results of EPICA. The human
FDG-PET data used and . The estimated
blood volume image using EPICA included negative voxels.
However, the spatial distribution of the estimated image was
weakly correlated with the blood volume image measured by
PET using O-CO with a correlation
coefficient of 0.76, suggesting that it is physiologically correct.

Fig. 10. Locations of ROIs. Twenty ROIs were placed on six slices.

To evaluate the estimated pTAC, 20 regions of interest (ROIs)
were placed on six slices (slice numbers 11, 12, 13, 14, 15,
and 16). The number of voxels per ROI was around 100 or
200. Fig. 10 shows the locations of the ROIs. The TACs were
averaged over each ROI. The influx parameter [1] of the av-
eraged TAC was estimated using the pTACs (the EPICA-esti-
mated pTAC and that from the arterial plasma samples). It is
defined as and is proportional to the
regional cerebral metabolic rate of glucose. The scale of the
estimated pTAC was adjusted using the peak of the measured
pTAC. As shown in Fig. 11, the influx parameters, , were es-
timated using the EPICA-estimated pTAC and correlated well
with those estimated using the exact clinical data. The correla-
tion coefficient was 0.999, and the fitted line had almost unity
slope .

IV. DISCUSSION

ICA is a statistical tool for the extraction of various useful
information from biological data [15]. However, the following
problems have been reported when applying ICA to real-world
data.

Problem 1) The statistical properties of source signals are
not always provided as a priori information.

Problem 2) The number of source signals is often unknown.
Problem 3) It is unlikely that source signals are independent

of each other in a strict mathematical sense.
To address these three problems, three modifications were ap-
plied to measured dynamic PET images for the extraction of the
pTAC.

The statistical properties of source signals in Problem 1 cor-
respond to the features regarding the spatial distribution of the
blood volume image and tissue image. These properties are con-
sidered to be dependent on the physiological or anatomical as-
pects of each subject, such that the characteristics of the two
images are unknown in advance. In EPICA, enhancement lo-
cates voxel values of the tissue image near 1 or and makes
the blood volume image conform to a distribution with long
tails. This allows us to use the converted distribution as a priori
information. Therefore, the accuracy of the estimation did not
vary greatly between subjects. The objective function can be
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designed based on these known properties. The design of the
objective function is also important in applying ICA to real-
world data in order to estimate sources of interest. Some ob-
jective functions, such as kurtosis, Gaussian, and have
been proposed [8]. These are general-purpose functions and are
very useful in many situations. However, a specialized objec-
tive function in the extraction of the pTAC from the dynamic
PET images is required because the general objective functions
cannot estimate the pTAC correctly. Fig. 7 shows a compar-
ison of the estimation under three conditions 1) using kurtosis
without standardization; 2) using kurtosis with standardization;
3) using proposed objective function with standardization. The
proposed function has the best performance, and standardiza-
tion produced a very similar pTAC. The choice of parameters
of the objective function for the actual data is an important and
difficult decision. Fortunately, the results of EPICA only varied
slightly for a range of the and parameters [16].

As regards Problem 2, EPICA assumes that there are two
source signals in the dynamic PET images, one is the blood
volume image and the other is the tissue image. This is not
strictly correct in the representation of a group of tTACs using
single tTAC , because the shape of the tTAC varies with
the kinetic parameters, . In ICA, if two columns
of a mixing matrix are relatively similar, compared with other
columns, the corresponding two components tend to be esti-
mated as one component [17]. Differences between the shape of
the tTACs are negligible compared with the difference between
the pTAC and a group of tTACs. Therefore, dynamic PET im-
ages can be regarded as a linear combination of the pTAC and
the representative tTAC.

Problem 3 means that the blood volume and the tissue images
are not strictly independent. As a result of this dependence, the
estimated blood volume images in Figs. 5 and 9 included neg-
ative voxels. Further investigation incorporating nonnegativity
constraints in the EPICA algorithm is required. For example, en-
semble learning for ICA [18] may be beneficial when estimating
the two images having both independence and nonnegativity.

The EPICA approach was validated by computer simulation
and clinical PET images using the PET blood volume measured
quantitatively using O-CO. There is good agreement between
the estimated blood volume image and the true blood volume
image, as shown in Fig. 6. Therefore, EPICA was very useful
in extracting a pTAC that was similar to the true pTAC (Figs. 4
and 8). Furthermore, the influx parameter, , estimated using
the EPICA-estimated pTAC correlated well with that calculated
from the arterial plasma samples. The estimated blood volume
image had a high concentration region corresponding to a large
sinus. EPICA does not depend on the kinds of tracers, and there-
fore this method has the potential to extract the pTAC from cere-
bral blood flow PET images if the scan intervals in the initial
section, from zero to approximately 3 min, are arranged to be
sufficiently short to capture the peak of the pTAC.

EPICA has an algorithm to distinguish the vessel-related in-
formation from the tissue-related information in dynamic PET
images based on differences in their spatial distributions. This
vessel-related information can have different meanings, such
as activity histories in arteries and in veins. For PET kinetic
studies, only the arterial history is essential. Fig. 11 underlines

Fig. 11. Correlation of the influx parameters, K , estimated using the
EPICA-estimated pTAC and the measured pTAC (y = 0:948x � 3:34 �
10 ; r = 0:999;n = 20). The K were estimated using 20 ROIs of the brain.

that the extracted vessel-related information originates exactly
from the arteries because the physiological parameter, ,
derived from arterial sampling, is highly correlated with the
EPICA estimates.

The proposed method replaces arterial catheterization with
arterial puncture. Arterial catheterization has some potential
complications including infection, occlusion, bleeding, pseu-
doaneurysm, or thrombosis [19], [20]. In the case of patients
suffering from thrombocytosis, a serious problem of digital
gangrene and autoamputation of a left index finger after radial
artery catheterization has been reported [21]. The risk is so
small in PET that there were only two serious complications in
3 000 catheterizations of scans [20]. Because the risk increases
with the duration of catheterization, the rate of temporary
thrombosis was more than 20% after 5 h of catheterization,
but the duration of a PET scan is less than 2 h. Although
the risk is small, the protocol may increase the patient’s risk,
cost, and duration of the PET scan. Some previous trials were
attempted to replace catheterization with puncture in some
clinical measurements [22]–[24]. In the PET Center of TMIG,
the average time for arterial catheterization is approximately
10 min. Sometimes, however, it takes more than 40 min to
complete the arterial catheterization, in which case the PET
measurement is aborted. Arterial puncture is much easier than
catheterization, so a method like EPICA is valuable for PET
scans as a routine procedure.

V. CONCLUSION

We have proposed a new method, extraction of the pTAC
using ICA (EPICA), to extract the pTAC-related component
from dynamic PET images without involving any serial arte-
rial blood sampling, and have evaluated its validity using com-
puter simulations and human FDG-PET studies. The proposed
EPICA method is a modified version of ICA, taking into ac-
count real PET data. Negative images are used to achieve zero
mean data and standardization emphasizes the differences be-
tween the two images. We conclude that EPICA shows promise
for determining the pTAC in dynamic PET studies.
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